Viewing a single comment thread. View all comments

onion OP wrote

Innovating the System

To overcome the exponential growth in data and subsequent stovepiping, the IC doesn’t need to hire armies of 20-somethings to do around-the-clock analysis in warehouses all over northern Virginia. It needs to modernize its security approach to connect these datasets, and apply a vast suite of machine learning models and other analytics to help targeters start innovating. Now. Technological innovations are also likely to lead to more engaged, productive, and energized targeters who spend their time applying their creativity and problem-solving skills, and spend less time doing robot work. We can’t afford to lose any more trained and experienced targeters to this rapidly fatiguing system.

The current system as discussed, is one of unvalidated data collection and mass storage, manual loading, mostly manual review, and robotic swivel chair processes for analysis.

The system of the future breaks down data stovepipes and eliminates the manual and swivel chair robot processes of the past. The system of the future automates data triage, so users can readily identify datasets of interest for deep manual research. It automates data processing, cleaning, correlations and target profiling – clustering information around a potential identity. It helps targeters identify patterns and suggests areas for future research.

How do current and emerging analytic and ML techniques bring us to the system of the future and better enable our targeter? Here are four ideas to start with:

Automated Data Triage: As data is fed into the system, a variety of analytics and ML pipelines are applied. A typical exploratory data analysis (EDA) report is produced (data size, file types, temporal analysis, etc.). Additionally, analytics ingest, clean and standardize the data. ML and other approaches identify languages, set aside likely irrelevant information, summarize topics and themes, and identify named entities, phone numbers, email addresses, etc. This first step aids in validating data need, enables an improved search capability, and sets a new foundation for additional analytics and ML approaches. There are seemingly countless examples across the U.S. national security space. Automated Correlation: Output from numerous data streams is brought into an abstraction layer and prepped for next generation analytics. Automated correlation is applied across a variety of variables: potential name matches, facial recognition and biometric clustering, phone number and email matches, temporal associations, and locations. Target Profiling: Network, Spatial, and Temporal Analytics: As the information is clustered, our targeter now sees associations pulled together by the computer. The robot, leveraging its computational speed along with machine learning for rapid comparison and correlation, has replaced the swivel chair process. Our targeter is now investigating associations, validating the profile, refining the target’s pattern-of-life. She is coming to conclusions about the target faster and more effectively and is bringing more value to the mission. She’s also providing feedback to the system, helping to refine its results. AI Driven Trend and Pattern Analysis: Unsupervised ML approaches can help identify new patterns and trends that may not fit into the current framing of the problem. These insights can challenge groupthink, identify new threats early, and find insights that our targeters may not even know to look for. Learning User Behavior: Our new system shouldn’t just enable our targeter, it should learn from her. Applying ML behind the scenes that monitors our targeter can help drive incremental improvements of the system. What does she click on? Did she validate or refute a machine correlation? Why didn’t she explore a dataset that may have had value to her investigation and analysis? The system should learn and adapt to her behavior to better support her. Her tools should highlight where data may be that could have value to her work. It should also help train new hires. Let’s be clear, we’re far from the Laplace’s demon of HBO’s “Westworld” or FX’s “Devs”: there is no super machine that will replace the talented and dedicated folks that make up the targeting cadre. Targeters will remain critical to evaluating and validating these results, doing deep research, and applying their human creativity and problem solving. The national security space hires brilliant and highly educated personnel to tackle these problems, let’s challenge and inspire them, not relegate them to the swivel chair processes of the past.

We need a new system to handle the data avalanche and support the next generation. Advanced computing, analytics, and applied machine learning will be critical to efficient data collection, successful data exploitation, and automated triage, correlation, and pattern identification. It’s time for a new chapter in how we ingest, process, and evaluate intelligence information. Let’s move forward.

2